Specifications:

Temperature Compensated 'Gd' doped Samarium Cobalt Ring Magnets (Sm₂Co₁₇)

Quantity: 50 sets

A Set consists of 4 ring magnets as given below (drawings attached):

```
Ø 57 mm (O.D) x 52mm (ID) x 8 mm (w) - O.D North polarity : D/Mag/2010/OUT (3&4) Ø 57 mm (O.D) x 52mm (ID) x 8 mm (w) - O.D South polarity : D/Mag/2010/OUT (3&4) Ø 42 mm (O.D) x 36mm (ID) x 8 mm (w)) - O.D North polarity : D/Mag/2010/IN (1&2) Ø 42 mm (O.D) x 36mm (ID) x 8 mm (w)) - O.D South polarity : D/Mag/2010/IN (1&2)
```

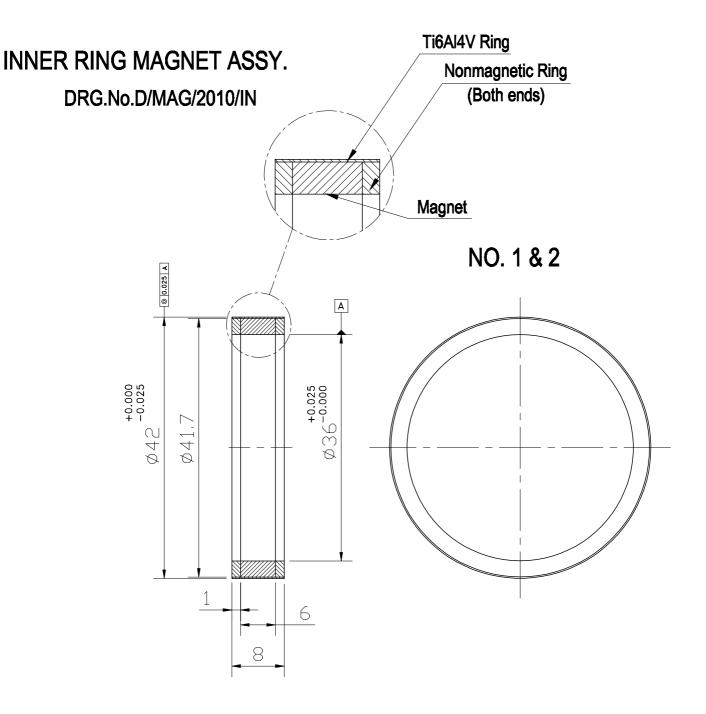
Polarization: Radial

Magnetical Properties (Typical)

Reverse temperature coefficient of Remanance < 50ppm/°C for a temperature range of 25 °C to 75 °C.

BH _{max}	200	KJ/m ³
Br	1	T
iHcJ	1900	kA/m
Hcb	700	kA/m
Reversible temp. coeff. Of remanance	50	ppm/° C
Operating Temperature (max.)	300	°C

Physical Properties


Density	8.3-8.4	gm/cc
Curie temperature	800	°C
Vickers Hardness	600	HV
Tensile Strength	39	MPa
Compressive Strength	650	MPa
Flexural Strength	120	MPa
Young's Modulus	150	GPa
Stress Crack Resistance	45	N/mm ^{3/2}
Coefficient of Thermal expansion		
//	5-8	E -6/K
Τ	11-12	E -6/K
Electrical Resistivity	8	E -7 ohm-m
Specific Heat	390	J/kg-K

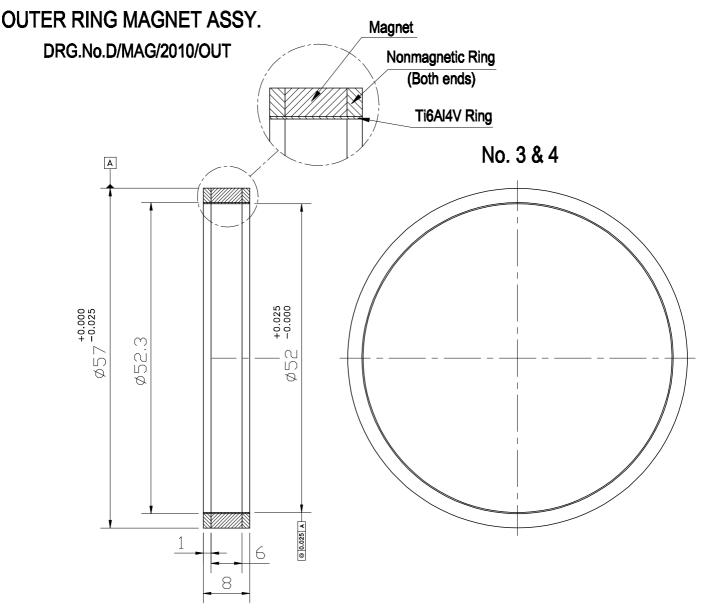
Note:

- To be supplied in magnetized condition as per drawing Nos. D/Mag/2010/IN (1&2) and D/Mag/2010/OUT (3&4)
- Radial orientation cylindrical rings, having only two magnetic poles, outer diameter forms one magnetic pole and inner diameter another magnetic pole.

General conditions:

- 1. Each magnetic ring should be given suitable support structure and packed in separate containers along with complete dimensions (OD,ID and length) to an accuracy of 5 microns.
- 2. Polarization to be clearly marked (for example OD North).
- 3. Stability characteristics of the magnet
- 4. Typical BH Curve of the Magnets
- **5.** Reversible temperature coefficient data.

Notes:


- 1. All corners must be chamfered to 0.3x45°
- 2. The faces must be flat within 10micron
- 3. General tolerence ±0.025 where ever not specified

No. 1 : OD North, ID South - Polarity No. 2 : OD South, ID North - Polarity

MAGNET MATERIAL - Rare earth cobalt

RADIAL OPERATION - Outer diameter forms one magnetic pole and

Inner diameter forms another magnetic pole

Notes:

- 1. All corners must be chamfered to 0.3x45°
- 2. The faces must be flat within 10micron
- 3. General tolerence ±0.025 where ever not specified

No. 3 : OD North, ID South - Polarity NO. 4 : OD South, ID North - Polarity

MAGNET MATERIAL - Rare earth cobalt

RADIAL OPERATION - Outer diameter forms one magnetic pole and

Inner diameter forms another magnetic pole